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It is shown that the time hierarchy governing shear and bulk relaxation in vircoelastic media has a 

fractal (scale-invariant) structure. It is noted that temporal fractality eases the modelling of viscoelastic 

media and leads to simple universal relaxation functions. In particular, in media with scale-invariant 

distributions of relaxational characteristics an algebraic relaxation law may occur, which leads to 

rheological models and equations of state containing fractional derivatives. 

Relaxation phenomena in rheophysically complex media are associated with the slow 
development of rearrangement processes amongst structural units of different length-scales. 
(For polymers these are flexible molecules and separate segments or clusters formed by these 
molecules.) These processes result in delayed changes in the deformation after changes in 
stress (hysteresis, elastic after-effects, stress relaxation, etc.) and can be described by models of 
elastic bodies with internal friction and viscous bodies with elasticity [l-5]. Mechanical models 
of viscoelastic bodies are useful for understanding the qualitative properties of relaxation 
phenomena, but their use for the quantitative description of actual materials requires the 
construction of very complicated systems consisting of a large number of different springs and 
viscous elements (due to the presence of a hierarchy of structural units of different scales, 
leading to a hierarchy of broadly distributed relaxation times). It is clear that complicated 
models cannot be efficient: there are very great difficulties associated with determining the 
numerous relaxation parameters from experimental data, and also with solving modelling 
problems for moving media with a wide spectrum of relaxation times. 

We shall show below that these difficulties can be circumvented by specifying the structure 
of the time hierarchies governing relaxation in rheophysically complex media. 

1. STRESS RELAXATION IN VISCOELASTIC MEDIA 

We consider a generalized Maxwellian body, the mechanical model of which is an array of 
links connected in parallel and consisting of springs and viscous elements connected in series. 
The rheology of such a body is governed by the well-known relations 

6= x CT,, E=&r)+&;*) 
#=I 

where E is the deformation of the body, o is the stress, o, = E.~ff’ = T@E~~ is the stress for the 
nth element with spring stiffness E,, and coefficient of viscous damping q,,, I$) and E(,Z) are the 
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elongation of the nth spring and displacement of the IZ th viscous element, and D= dldt is the 
differentiation operator. 

Suppose that at a time t = 0 the body experiences a deformation E = h(t), where h(t) is the 
Heaviside function. Stress relaxation is then governed by the function [l-5] 

a(t) = C E, exp 
n 

W) 

where T, = rl,, /EM is the relaxation of the nth element. The quantity E,, (n = 1, 2, . . .) governs 
the contribution of the n th element to the total stress, 

It has recently been shown that multilevel relaxation processes in many very different 
systems are characterized by a scale-invariant (fractal) distribution of characteristic times [6,7]. 
Based on this, we shall assume that the quantities E, and z, are governed by scale laws of the 
form 

E,, = &I A: = E, exp(-nh), A, = ln X, (1.2) 

%I = Tg& = ze exp(+), p = In j.ti (1.3) 

or instead of (1.3) 

‘f =zonv 
I! (1.41 

Thus, when there is temporal scale-invariance, In E should decrease linearly as n increases, 
The existence of such a relation is confirmed by data from 153, which gives values of E, and 

2, for several hierarchical levels in specimens of monodisperse and polydisperse polystyrenes. 
According to these data the logarithm of the relaxation time also depends linearly on the level 
number, which could be a manifestation of the law (1.3). However, it should be noted that for 
high hierarchical levels (which were those considered in [5]), law (1.4) also leads to an 
approximately linear relation between n and rn, so that on the basis of the above data [5] alone 
one cannot give reference to any of the above possible relations for the relaxation time. 

Choosing laws (1.2) and (1.3) and converting the summation (1.1) into an integral, we obtain 

a,(t) = E,,T exp(-xk)exp 
0 

To find the asymptotic behaviour of this integral at long times we change the variable 
z = exp(--x@ and use Laplace’s method to obtain 

(1.5) 

If, however, the relaxation time is given by (1.4), then 

Hence, the scale-invariance of the relaxation processes considerably simplifies their descrip- 
tion and enables one to use fairly simple universal relaxation functions of the type (1.5) and 
(1.6). 
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We note that a relaxation function of the type (1.5) with exponent equal to -l/2 can be 
obtained in the Rouse and Bikki molecular theory of visc~lasticity f5]. However, that theory 
cannot explain the often-observed deviation of the exponent from that magnitude, and 
moreover, the origin of a relaxation function of the type (1.6). 

The scale-invariance of the distribution of relaxation parameters can serve to explain the 
principle of temperature-time supe~~ition [S] which is expressed by the ~ons~aint 

@(k(T)t) = ~,mQ?,w (1.7) 

where T, is some characteristic temperature, Q(t) and G+,(t) are relaxation functions at 
temperatures T and T,, and k and kl are temperature-dependent coefficients (k(T,) = k,(q) = 
1). Indeed, if we assume that the exponents h and u do not depend on temperature, then from 
(1.5) we obtain (1.7) when 

As an example we considered the stress relaxation curve in a sample of monodisperse poly- 
styrene [5]. Calculations showed that this curve was described quite well by Kohlrausch’s law 
(1.6) when (l/v+l)=OSO. 

2. RHEOLOGICAL MODELS WITH FRACTIONAL DERIVATIVES 

We will now consider a viscoelastic body represented by a series of Voight bodies (Iinks 
consisting of springs and viscous elements connected in parallel). Then the connection 
between the rate of deformation and the stress is governed by the relations [l, 31 

AS above, we assume the presence of scale-invariance in the distribution of the relaxation 
parameters 

rl, = 770 exp@‘n), 2, = 2. exp(nu) 

Then (see (1.5)) 

y(t) = Lt-‘, L = w, )4’ / eloEL) 

and (2.1) can be rewritten in the form 

D&(t) = q%(t) + rldmM(t) 

(where D’f(t) is a fractional derivative of order -7.) 
Taking E, = E0 exp(-hn) we obtain 

(2.2) 

(2.3) 

z n = q,Ei’ exp((h’+ l)n) 
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fromwhich Ocy, ~1, O<ycl. 
Hence the presence of temporal scale-invariance leads to the need to use rheological models 

with fractional derivatives. Note that similar models (arising from other considerations) have 
been previously introduced (e.g. [3, 4, 81). The result obtained here also has connections with 
[9], where it was shown that the temporal self-similarity of the processes leads to equations 
with fractional derivatives. We emphasize that a rheological law with fractional derivatives has 
been obtained for models that only include different spring and viscous elements, unlike in [4], 
where the existence of an independent type of deformation was postulated: a highly-flexible 
deformation which cannot be reduced to a sum of elasticity and viscous friction. 

3. RELAXATION PROCESSES FOR BULK DEFORMATION 

We will now consider relaxation processes for bulk deformation. It has been noted in a 
number of experiments [lo, 111 that if a vessel is filled with a structured liquid (for example, 
petroleum with asphalt-tar impurities), and then pressurized and hermetically sealed, the 
pressure in the vessel falls slowly to some steady-state value. Relaxation processes of this kind 
are associated with rearrangements of macromolecules and clusters formed by them. When 
rapidly compressed, such a system undergoes an instantaneous elastic deformation whose 
magnitude is governed by the coefficient of bulk elasticity of the medium in its initial state. 
There is then a slow rearrangement of structural units of differing complexity, with the 
medium becoming denser and its volume becoming smaller, with, as a consequence, a fall in 
pressure. Assuming the structural units to be viscoelastic elements, one can obtain 

(3.1) 

v,(c) =/S’s:, $ 
= n [ 

I-exp --J- 
( 11 n 

where -6V is the reduction in the volume of the medium when the pressure has been 
increased by 6p, V, is the initial volume, wI(r) is the relaxation function, and p’ is a quantity 
governing the change in volume due to the shifting of structural elements. 

Differentiating (3.1) with respect to time we obtain the equation of state of a viscoelastic 
medium in the form 

-!-Dp=BoDp+; W-@Wt)d5 
PO 0 

(where p,, is the density of the medium). 
We again take scale laws of the form (1.2) and (1.3) and retaining the previous notation, we 

obtain, like (2.3) 

p,‘Dp(G = B,,(oP+ I&D-%). .B, = B’rtr, I$ / (14&%) (3.2) 

Thus the equation of state of a viscoelastic medium can also contain fractional derivatives. 
(The order of the derivatives in (2.3) and (3.2) can differ, but for the time being we will keep 
the same notation.) 
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As an example, consider data from the following experiment performed by G. M. Panakhov. A high- 

pressure thermostatically-controlled container was filled with structured petroleum, containing impurities 
in the form of paraffins and tar. After being filled the container was thoroughly evacuated and the 
pressure was then abruptly raised by rapidly injecting into the container a small quantity of petroleum 

from a PVT bomb. After this the container was closed and the pressure drop was measured as a function 
of time. The results of one such experiment, during which the pressure in the closed container fell from 5 
to 4.64 MPa, are shown below: 

txlo”, s 0 1.5 3 6 15 30 60 
P, MPa 5.00 4.91 4.%5 4.78 4.72 4.68 4.65 

We assume that the pressure relaxation in the container is described by Eq. (3.2). To identify this 

model we use the operational methods of 112,131. Since the petroleum density does not change during the 

relaxation process 

Putting 

and performing a Laplace transformation, we find from (3.2) that 

hl ( 1 f-l =ln&-yhls, u= +--& 7 exp(-s06pl(Nt 
0 

(3.3) 

where h(t) is the pressure measured in the experiment. Thus, if the bulk relaxation is in fact described by 

model (3.2), the pressure variation curve should become straight in Y = ln(l(sU)-l), In s coordinates. To 
verify this fact various values of s were specified in the interval [S/T, 20/T] (T being the period of time 

over which the experimental curve was measured; in the present case it was T = 6000 s), and the 
transform of the function &I(I) was calculated using the formula 

~(s)~sIpo+I 
s s2 : [ 

6plCti+*)-6pltri) e-Sfi _,-Sfi+t 

‘i+l - 4 ( 
)I 

The calculations show that the relaxation curve does indeed straighten in these coordinates. The slope 
of the line was found to be y = 0.78. 

The results obtained can be used to derive equations of motion for relaxing media. We will first 

consider the motion of a structured relaxing liquid in a tube of radius R. We write the rheological 

equation of the medium in the form (cf. (2.3)) 

where u(r, t) is the component of the velocity along the tube axis, CJ is the shear stress, and 11 is the 
viscosity of the medium. Averaging Eq. (3.4) over the tube cross-section one can obtain the following 

equation of motion within the framework of the quasisteady approximation [14] 

(3.5) 

where w is the velocity averaged over the cross-section, and 3plk is the pressure gradient along the tube 
axis. 
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Using (3.2), the equation of ~nt~uity 

can be written in the form 

(3.6) 

where c, is the “~stantaneo~” velocity of sound in the medium. Eliminating the velocity from (3.5) and 
(3.61, we obtain the equation of motion of a relaxing fluid in the form 

(3.7) 

The filtration equation can be obtained by ignoring the inertial term &v/at in (3.7) and putting 
l/(Z?u)=k/~, where w is now the filtration velocity and k is the permeability of a porous medium. 
Following the usual methods (for example, of [XT]), we obtain in this case the following analogue of (3.7) 

where z is the coefficient of piezocondu~ivity and m is the porosity. 
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